Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells.
نویسندگان
چکیده
Graphene oxide nanoribbons for efficient and stable polymer solar cells are discussed. With controllable bandgap, good solubility and film forming property, graphene oxide nanoribbons serve as a new class of excellent hole extraction materials for efficient and stable polymer solar cells outperforming their counterparts based on conventional hole extraction materials, including PEDOT:PSS.
منابع مشابه
Effect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملFew-layered graphene quantum dots as efficient hole-extraction layer for high-performance polymer solar cells
0.1016/j.nanoen.2 ublished by Elsevi thors. : [email protected] (L. Dai). Abstract In this study, we demonstrate that few-layered graphene quantum dots (F-GQDs) can be used as hole-extraction layer (HEL) for high efficiency polymer solar cells (PSCs). As a new class of HEL material, graphene oxide (GO) is not suitable for polymer solar cells (PSCs) based on highly efficient donor polymers due to...
متن کاملSulfated Graphene Oxide as a Hole-Extraction Layer in High-Performance Polymer Solar Cells.
In this study, we have rationally designed and successfully developed sulfated graphene oxide (GO-OSO3H) with -OSO3H groups attached to the carbon basal plane of reduced GO surrounded with edge-functionalized -COOH groups. The resultant GO-OSO3H is demonstrated to be an excellent hole extraction layer (HEL) for polymer solar cells (PSCs) because of its proper work function for Ohmic contact wit...
متن کاملStable and null current hysteresis perovskite solar cells based nitrogen doped graphene oxide nanoribbons hole transport layer
UNLABELLED Perovskite solar cells are becoming one of the leading technologies to reduce our dependency on traditional power sources. However, the frequently used component poly(3,4-ethylenedioxythiophene) polystyrene sulfonate ( PEDOT PSS) has several shortcomings, such as an easily corroded indium-tin-oxide (ITO) interface at elevated temperatures and induced electrical inhomogeneity. Herei...
متن کاملPerovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20.
Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advanced materials
دوره 26 5 شماره
صفحات -
تاریخ انتشار 2014